Abstract

The dynamic viscosities of biodiesel derived from ethyl esters of fish oil, no. 2 diesel fuel, and their blends were measured from 298 K down to their respective pour points. Blends of B80 (80 vol.% biodiesel–20 vol.% no. 2 diesel), B60, B40 and B20 were investigated. All the viscosity measurements were made with a Bohlin VOR Rheometer. Cloud point and pour point measurements were made according to ASTM standards. Arrhenius equations were used to predict the viscosities of the pure Biodiesel (B100), no. 2 diesel fuel (B0) and the biodiesel blends (B80, B60, B40, and B20) as a function of temperature. The predicted viscosities agreed well with measured values. An empirical equation for calculating the dynamic viscosity of these blends as a function of both temperature and blend has been developed. Furthermore, based on the kinematic viscosity and density measurements of B100 up to 573 K by Tate et al. [Tate RE, Watts KC, Allen CAW, Wilkie KI. The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1010–5; Tate RE, Watts KC, Allen CAW, Wilkie KI. The densties of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1004–9] an empirical equation for predicting the dynamic viscosity of pure biodiesel for temperatures from 277 K to 573 K is given. Empirical equations for predicting the cloud and pour point for a given blend give values in good agreement with experiments. The dynamic viscosity of biodiesel and its blends increases as temperature decreases and show Newtonian behaviour down to the pour point. Dynamic viscosity, cloud point and pour point decreases with an increase in concentration of no. 2 diesel in the blend.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.