Abstract

The flow and heat transfer of a viscous chemically reacting liquid in a flat channel during the molding of composite products are studied. The main assumptions in the task definition were made on the basis of the high viscosity of the liquid and its low thermal diffusivity. The Brinkman equation is used as a motion equation. The flow is accompanied by a chemical reaction, resulting in a sharp increase in viscosity. The viscosity is considered to depend on the temperature and the degree of conversion. This, in turn, led to the inclusion of the kinetic equation of a chemical reaction in the mathematical model. The energy equation is denoted using a single-temperature model and includes dissipative heat emissions. The problem is solved for temperature first-order boundary conditions. The calculations are given for the Nusselt number distribution and the velocity profile transformation. The task was solved numerically by the finite difference method using iterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.