Abstract

PurposeThe purpose of this study is to use a weak light source with spatial distribution to realize light-driven fluid by adding high-absorbing nanoparticles to the droplets, thereby replacing a highly focused strong linear light source acting on pure droplets.Design/methodology/approachFirst, Fe3O4 nanoparticles with high light response characteristics were added to the droplets to prepare nanofluid droplets, and through the Gaussian light-driven flow experiment, the Marangoni effect inside a nanofluid droplet was studied, which can produce the surface tension gradient on the air/liquid interface and induce the vortex motion inside a droplet. Then, the numerical simulation method of multiphysics field coupling was used to study the effects of droplet height and Gaussian light distribution on the flow characteristics inside a droplet.FindingsNanoparticles can significantly enhance the light absorption, so that the Gaussian light is enough to drive the flow, and the formation of vortex can be regulated by light distribution. The multiphysics field coupling model can accurately describe this problem.Originality/valueThis study is helpful to understand the flow behavior and heat transfer phenomenon in optical microfluidic systems, and provides a feasible way to construct the rapid flow inside a tiny droplet by light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.