Abstract

A model for platelet activation based on the theory of damage, incorporating cumulative effects of stress history and past damage (senescence) was applied to a three-dimensional (3-D) model of blood flow through a St. Jude Medical (SJM) bileaflet mechanical heart valve (MHV), simulating flow conditions after implantation. The calculations used unsteady Reynolds-averaged Navier-Stokes formulation with non-Newtonian blood properties. The results were used to predict platelet damage from total stress (shear, turbulent, deformation), and incorporate the contribution of repeated passages of the platelets along pertinent trajectories. Trajectories that exposed the platelets to elevated levels of stress around the MHV leaflets and led them to entrapment within the complex 3-D vortical structures in the wake of the valve significantly enhanced platelet activation. This damage accumulation model can be used to quantify the thrombogenic potential of implantable cardiovascular devices, and indicate the problem areas of the device for improving their designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.