Abstract

Investigation of combustion instabilities in gas turbine combustors require the knowledge of flame transfer functions. Those can be obtained by experimental measurement or by Large Eddy Simulations (LES). Because calculations are usually limited to a portion of the whole combustor, boundary conditions are of crucial importance. It is common practice to inject acoustic perturbations for the flame transfer function measurement in form of velocity perturbations ( u′( t)). We present an alternative method based on a characteristic treatment of the Euler Equations. It consists of injecting sound waves traveling into the computational inlet while letting outgoing waves leave the domain without reflection. This method has several advantages concerning the study of flame transfer functions compared to injecting velocity perturbations. Both techniques are compared for cases where analytical solutions may be derived (a duct without flame and a planar laminar flame) and for one case where a CFD code is necessary (a laminar Bunsen-type flame).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.