Abstract

The current demands for high-performance gas turbine engines can be reached by raising combustion temperatures to increase power output. High combustion temperatures create a harsh environment that leads to the consideration of the durability of the combustor and turbine sections. This paper presents a computational study of a flow field that is representative of what occurs in a combustor and how that flow field convects through the first downstream stator vane. The results of this study indicate that the development of the secondary flow field in the turbine is highly dependent on the incoming total pressure profile. The endwall heat transfer is also found to depend strongly on the secondary flow field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.