Abstract

In this work, optimal shaft shapes for flow in the annular space between a rotating shaft with axially-periodic radius and a fixed coaxial outer circular cylinder, are investigated. Axisymmetric steady flows in this geometry are determined by solving the full Navier-Stokes equations in the actual domain. A measure of the flow field, a weighted convex combination of the volume averaged square of the L2-norm of the velocity and vorticity vectors, is employed. It has been demonstrated that boundary shape can be used to influence the characteristics of the flow field, such as its velocity component distribution, kinetic energy, or even vorticity. This ability to influence flow fields through boundary shape may be employed to improve microfluidic mixing or, possibly, to minimize shear in biological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.