Abstract

We present a comprehensive workflow to simulate single-phase flow and transport in fractured porous media using the discrete fracture matrix approach. The workflow has three primary parts: (1) a method for conforming mesh generation of and around a three-dimensional fracture network, (2) the discretization of the governing equations using a second-order mimetic finite difference method, and (3) implementation of numerical methods for high-performance computing environments. A method to create a conforming Delaunay tetrahedralization of the volume surrounding the fracture network, where the triangular cells of the fracture mesh are faces in the volume mesh, that addresses pathological cases which commonly arise and degrade mesh quality is also provided. Our open-source subsurface simulator uses a hierarchy of process kernels (one kernel per physical process) that allows for both strong and weak coupling of the fracture and matrix domains. We provide verification tests based on analytic solutions for flow and transport, as well as numerical convergence. We also provide multiple expositions of the method in complex fracture networks. In the first example, we demonstrate that the method is robust by considering two scenarios where the fracture network acts as a barrier to flow, as the primary pathway, or offers the same resistance as the surrounding matrix. In the second test, flow and transport through a three-dimensional stochastically generated network containing 257 fractures is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.