Abstract
Streambank seeps commonly originate from localized heterogeneity or preferential flow pathways (PFPs) in riparian floodplains. However, limited field data have been reported on ground water seep flows and solute transport to seeps from PFPs. The objective of this research was to build upon previous floodplain-scale investigations of PFPs by analyzing seep discharge and transport char acteristics through a single PFP. An important research question was whether this PFP could be conceptualized as a homogeneous, one-dimensional flow path. Streambank seep discharge measurements were obtained by inducing a hydraulic head in a trench in jection system. Also, co-injection of Rhodamine WT (RhWT) and a potassium chloride (KCl) tracer over a 60-min period was used to investigate transport dynamics. Seep discharge and breakthrough curves for electrical conductivity (EC) and RhWT were measured at the streambank using a lateral flow collection device. The breakthrough curves were fit to one-dimensional convectivedispersion equations (CDEs) to inversely estimate solute transport parameters. The PFP from which the seep originated was clean, coarse gravel (6% by mass less than 2.0 mm) surrounded by gravel with finer particles (20% by mass less than 2.0 mm). Located approximately 2 m from the trench, the seep (50 cm by 10 cm area) required at least 40 cm of hydraulic head for flow to emerge at the streambank. At a higher hydraulic head of 125 cm, seep discharge peaked at 3.5 L/min. This research verified that localized PFPs can result in the rapid transport of water (hydraulic conductivity on the order of 400 m/d) and solutes once reaching a sufficient near-bank hydraulic head. A one-dimensional equilibrium CDE was capable of simulating the EC (R 2 = 0.94) and RhWT (R 2 = 0.91) breakthrough curves with minimal RhWT sorption (distribution coefficient, K d , equal to 0.1 cm 3 /g). Therefore, the PFP could be conceptualized as a one-dimensional, homogenous flow and transport pathway. These results are consistent with previous research ob serving larger-scale phosphorus transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.