Abstract

A mathematical model is developed to predict the transport phenomena during evaporation in the extended meniscus region of a micro-capillary channel. In this model, the vapor pressure variation and the disjoining pressure effect are included and the friction force at the liquid–vapor interface is considered as well. The results show that the local heat transfer coefficient has an extremely large value in the thin film region. The heat transfer rate, however, is larger for the meniscus than for the thin film region. The maximum liquid velocity appears at approximately 40% of the extended meniscus region and the variation of the heat flux has a negligible effect on the maximum liquid velocity. It is also found that the length of the extended meniscus region is affected by the heat flux, the channel height and the dispersion constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.