Abstract

By considering the recent developments in porous media, the correction to the fundamental error made by many researchers, while formulating the flow and heat transfer in porous medium over stretching surface has been incorporated in this present problem, which is still open in the literature. Here an analysis is carried out to study the flow and heat transfer characteristics in a viscoelastic fluid flow in porous medium over a stretching surface with two general cases namely PST and PHF cases, including the effects of viscous dissipation. The partial differential equations governing the flow and heat transfer are converted into ordinary differential equations and boundary conditions by suitable similarity transformation. The proposed problem has been solved analytically by power series method (using Kummer’s function). The graphical results for velocity, wall frictional coefficient and temperature are presented and discussed. Furthermore, it is shown that porous medium has same effect on the flow as viscoelasticity and it is also shown that the heat flow is always from the stretching sheet to the fluid. The numeric values of wall frictional coefficient 1 2 C f Re x 1 / 2 , surface velocity gradient f ηη (0) and wall temperature gradient θ η (0) and wall temperature g(0) are also calculated, tabulated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.