Abstract

The effect of flow acceleration, rather than just the flow rate, on the response of an attached cancer cell is for the first time reported. Selective binding of prostate cancer cells to a surface functionalized with anti-N-cadherin antibodies utilizing a microfluidic system under flow conditions has been studied. Here, the behavior of a captured cell under a time-dependent flow field is investigated experimentally and numerically. Under slowly increasing flow rate, the cell deformation is more pronounced resulting in lower drag force on attached cells. Furthermore, the contact area between the cell and the functionalized surface is larger, potentially enhancing the cell adhesion force. Consequently, a higher flow rate is required to detach cells exposed to such a flow field. Numerical simulations have been utilized in effort to quantify the required detachment force. The results confirm that to obtain a similar shear stress, a higher flow rate is needed for attached cells under lower flow acceleration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.