Abstract

Shotgun metagenomics allows for direct analysis of microbial community genetics, but scalable computational methods for the recovery of bacterial strain genomes from microbiomes remains a key challenge. We introduce Floria, a novel method designed for rapid and accurate recovery of strain haplotypes from short and long-read metagenome sequencing data, based on minimum error correction (MEC) read clustering and a strain-preserving network flow model. Floria can function as a standalone haplotyping method, outputting alleles and reads that co-occur on the same strain, as well as an end-to-end read-to-assembly pipeline (Floria-PL) for strain-level assembly. Benchmarking evaluations on synthetic metagenomes show that Floria is > 3× faster and recovers 21% more strain content than base-level assembly methods (Strainberry) while being over an order of magnitude faster when only phasing is required. Applying Floria to a set of 109 deeply sequenced nanopore metagenomes took <20 min on average per sample and identified several species that have consistent strain heterogeneity. Applying Floria's short-read haplotyping to a longitudinal gut metagenomics dataset revealed a dynamic multi-strain Anaerostipes hadrus community with frequent strain loss and emergence events over 636 days. With Floria, accurate haplotyping of metagenomic datasets takes mere minutes on standard workstations, paving the way for extensive strain-level metagenomic analyses. Floria is available at https://github.com/bluenote-1577/floria, and the Floria-PL pipeline is available at https://github.com/jsgounot/Floria_analysis_workflow along with code for reproducing the benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.