Abstract
Plant trait data are essential for quantifying biodiversity and function across Earth, but these data are challenging to acquire for large studies. Diverse strategies are needed, including the liberation of heritage data locked within specialist literature such as floras and taxonomic monographs. Here we report FloraTraiter, a novel approach using rule-based natural language processing (NLP) to parse computable trait data from biodiversity literature. FloraTraiter was implemented through collaborative work between programmers and botanical experts and customized for both online floras and scanned literature. We report a strategy spanning optical character recognition, recognition of taxa, iterative building of traits, and establishing linkages among all of these, as well as curational tools and code for turning these results into standard morphological matrices. Over 95% of treatment content was successfully parsed for traits with <1% error. Data for more than 700 taxa are reported, including a demonstration of common downstream uses. We identify strategies, applications, tips, and challenges that we hope will facilitate future similar efforts to produce large open-source trait data sets for broad community reuse. Largely automated tools like FloraTraiter will be an important addition to the toolkit for assembling trait data at scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.