Abstract

This paper investigates the flocking problem of networked nonlinear Euler–Lagrange systems with parametric uncertainties, and they are assumed to interact on directed graphs with a directed spanning tree. We propose an adaptive controller to achieve the flocking objective, and the resultant closed-loop networked system bears the cascade structure. Using a new similarity decomposition approach, a critical-characteristic-root based approach, and the input–output stability analysis, we demonstrate the convergence of the position/velocity synchronization errors among the uncertain nonlinear Euler–Lagrange agents. We also show that the velocities of the Euler–Lagrange systems converge to the weighted average velocity value. Simulation results are provided to demonstrate the performance of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.