Abstract
Isolated conductors appear in various electrostatic problems. In simulations, an equipotential condition with a floating (undefined) potential value is enforced on the surface of an isolated conductor. In this work, a numerical scheme making use of the discontinuous Galerkin (DG) method is proposed to model such conductors in electrostatic simulations. A floating-potential boundary condition, which involves the equipotential condition together with a total charge condition, is “weakly” enforced on the conductor surface through the numerical flux. Compared to adaptations of the finite element method used for modeling conductors, the proposed method is more accurate, capable of imposing nonzero charge conditions, and simpler to implement. Numerical results, which demonstrate the accuracy and applicability of the proposed method, are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.