Abstract

We have fabricated a carbon nanotube field-effect transistor (CNTFET)-based nonvolatile memory device with Si floating dots. The electrical characteristics of this memory device were compared with those of devices with a HfO2 charge storage layer or Au floating dots. For a sweep width of 6 V, the memory window of the devices with the Si floating dots increased twofold as compared with that of the devices with the HfO2 layer. Moreover, the retention characteristics revealed that, for the device with the Au floating dots, the off-state had almost the same current as the on-state at the 400th s. However, the devices with the Si floating dots had longer-retention characteristics. The results indicate that CNTFET-based devices with Si floating dots are promising candidates for low-power consumption nonvolatile memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.