Abstract

Recently developed lipids with the trans-2-aminocyclohexanol (TACH) moiety represent unique pH-sensitive conformational switches (“flipids”) that can trigger the membrane of liposome-based drug delivery systems at lowered pH as seen in many pathological scenarios. A library of flipids with various TACH-based headgroups and hydrocarbon tails were designed, prepared, and characterized to systematically elucidate the relationship between their chemical structures and their ability to form and to trigger liposomes. Liposomes (fliposomes) consisting of a flipid, POPC and PEG-ceramide were stable at 4°C, pH 7.4 for up to several months and yet released the encapsulated fluorophore in seconds upon acidification. The colloidal properties and encapsulation efficiencies of the fliposomes depended on the structure features of the flipids such as the polarity of the headgroups and the shape and fluidity of the lipid tails. The pH-triggered release also depended on the flipid structure, where shorter linear tails yielded more efficient release. The release of fliposomes was enhanced at different narrow pH ranges, depending on the basicity of the flipid headgroup, which can be estimated either by calculated pKa or by acid/base titration of the flipids while its conformation is monitored by 1H NMR. The structure-activity relationship of the flipids supports “lipid tail conformational shortening” as the mechanism to disrupt lipid membranes and would provide great flexibility in the design of pH-sensitive drug delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.