Abstract

Despite well over a decade of intensive research and development efforts, detect-and-avoid (DAA) technology remains in an immature state for medium and large unmanned aerial systems (UAS) and is in its very infancy for small UAS (sUAS). Routine Beyond Visual Line-of-Sight (BVLOS) operations will not be achieved until this technological impasse has been surpassed. Although a multi-system/multi-sensor approach is known to be the robust solution, sUAS platforms are challenged to host such an equipment suite in addition to their revenue-generating payload for commercial applications. Recent developments in small form-factor LiDAR and radar sensors may prove to be vital components in the overall DAA solution for sUAS. These types of sensors are being developed primarily for the autonomous ground vehicle market, but may be adapted for UAS applications. This paper documents a series of ground and flight tests conducted to evaluate the performance of both a small form-factor LiDAR and radar sensors. Obstacle detection range versus obstacle size is determined for both sensors in static and dynamic flight modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.