Abstract

Many attempts have been made to reduce aviation’s environmental impact, as aviation traffic has grown exponentially in recent decades. While some approaches focus on technology and fuel alternatives, others strive to develop improved operational measures within air traffic management as a short-term action to mitigate aviation-induced climate change, as well as air pollution. In this work, different flight procedures are analyzed in terms of emissions and noise impact to define optimal trade-offs. The investigation is based on flight data recorders, emissions, and noise prediction models. An aircraft trajectory simulation code with flight procedure optimization is also implemented to define an environmentally optimal trajectory. The results show that while noise and the emissions proportional to the burned fuel may be reduced for some trajectories, other non-CO2 emissions could drastically increase if too low idle-thrust levels are reached. Therefore, a minimum threshold for idle thrust is suggested as a key factor to define a truly optimal trajectory in terms of CO2 emissions, non-CO2 emissions, and noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.