Abstract

The insect order Phasmida comprises species with a broad spectrum of wing morphism and flight ability. By monitoring the electrical activity of several pterothoracic muscles the motor output during tethered flight was recorded for several Phasmida, ranging from excellent fliers to non-winged species. Both winged and non-winged species can generate a motor pattern as judged by criteria used to identify the locust flight pattern. However, in non-fliers the probability of expressing this pattern, its duration and precision are reduced. The antagonistic activity of the chosen muscle pairs is clearly different from the motor output during leg movements, which argues for specific motoneuronal coordination released for different behavioural performances. The demonstration of flight motor output in all tested Phasmida indicates that neural structures including their functional connectivity can be maintained independently of the appropriate peripheral structures. With respect to evolution this supports the idea that central neuronal interactions can be more conservative compared to changes in the periphery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.