Abstract

Plants produce volatile chemical compounds that can negatively affect the preference (antixenosis) or the performance (antibiosis) of herbivorous insects. It is thought that these volatile compounds are used as cues by herbivorous insects to determine the suitability of the plant for egg deposition and, hence, offspring performance. Here, we investigated whether volatiles produced by tomato plants play a role in modulating the flight and oviposition behavior of mated Tuta absoluta females. We found that the behavioral steps displayed by mated females did not differ when they flew toward resistant or susceptible tomato genotypes, but they reached the susceptible genotypes faster than the resistant ones. Moreover, females landed more often and laid more eggs on the most susceptible genotype, the Santa Clara variety. Because this variety is known to be of high quality for the development of T. absoluta larvae, the female’s decision to land and lay more eggs on this genotype seems to be mainly to maximize offspring performance. However, this is not so straightforward because the proportion of landings and eggs laid by T. absoluta on another susceptible genotype tested in this study was not significantly higher than on the resistant genotypes. Finally, although future studies are still needed, considering the antixenotic and antibiotic traits of the resistant genotypes studied here, they are likely to succeed if used in integrated pest management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.