Abstract

Abstract The flexural-torsional buckling response and design of stainless steel I-section beam-columns are investigated in this paper. First, a series of laboratory tests on laser-welded stainless steel I-section beam-columns susceptible to flexural-torsional buckling is presented. The results obtained are supplemented by further data generated by means of numerical parametric studies on both conventionally arc-welded and laser-welded stainless steel members covering a wide range of member slenderness and combinations of loading. Existing provisions for the design of welded stainless steel I-section elements against flexural-torsional buckling are then assessed and found to require improvement. Finally, new formulae for the design of stainless steel I-section beam-columns susceptible to flexural-torsional buckling are proposed. The new proposals yield improved accuracy and consistency over existing provisions and their suitability for inclusion in the upcoming version of the European structural stainless steel design code EN 1993-1-4 is confirmed by reliability analysis in accordance with EN 1990.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.