Abstract
Transparent conductive coatings are essential for fabrication of a variety of printed electronic devices such as flexible displays and solar cells. We report on a simple method to obtain such coatings by using aqueous dispersions of silver nanoparticles in an evaporative lithography process which is performed directly onto plastic substrates. In essence, a droplet containing silver nanoparticles is placed on top of a metallic mesh, instantaneously spreading over the mesh and the plastic substrate, and after the flow of the dispersion towards the wires of the mesh and drying, a transparent grid composed of the nanoparticles is formed. The silver nanoparticles are tailored to self-sinter upon short exposure to HCl vapors, due to the presence of polyacrylic acid salt on the surface of the particles. Therefore, immediate sintering of the silver nanoparticles in the thin lines of the grid occurs even at room temperature, enabling formation of transparent, flexible conductive grid on heat-sensitive substrates. The process yielded a conductive array having a very low sheet resistance, 9 ± 0.8 Ω/□, and a transparency above 75%. The application of the flexible conductive grid, which can replace conventional and expensive ITO, is demonstrated in an electroluminescent (EL) device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.