Abstract
© 2018 Elsevier B.V. We present an imperative object calculus where types are annotated with qualifiers for aliasing and mutation control. There are two key novelties with respect to similar proposals. First, the type system is very expressive. Notably, it adopts the recovery approach, that is, using the type context to justify strengthening types, greatly improving its power by permitting to recover uniqueness and immutability properties even in presence of other references. This is achieved by rules which restrict the use of such other references in the portion of code which is recovered. Second, execution is modeled by a non standard operational model, where properties of qualifiers can be directly expressed on source terms, rather than as invariants on an auxiliary structure which mimics physical memory. Formally, this is achieved by the block construct, introducing local variable declarations, which, when evaluated, play the role of store.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.