Abstract

X-ray detection and imaging technology has been rapidly developed for various fields since 1895, offering great opportunities to scientific and industrial communities. Particularly, flexible X-ray detectors have drawn numerous attention in medical-related applications, solving the uniform issues of traditional rigid X-ray detectors. Out of all the potential materials, metal halide perovskites (MHPs) have been emerged as excellent candidates as flexible X-ray scintillators and detectors owing to the advantages including low temperature solution processable, strong X-ray absorption coefficient, large mobility lifetime product and tunable bandgap. In this review, the recent advances of MHP-based flexible X-ray detectors are comprehensively summarized, focusing on the scalable synthesis technologies of materials and diverse device architectures, and covering both direct and indirect X-ray detection. A brief outlook that highlights the current challenges impeding the commercialization of flexible MHP-based X-ray detectors is also included with possible solutions to those problem being provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.