Abstract
Nickel disulfide nanoparticles (NiS2NPs)-anchored carbon nanofibers (NiS2NPs@CNF) hybrid mats were fabricated via the sequential process of stabilization and carbonization of electrospun polyacrylonitrile-based fibers followed by hydrothermal growth of NiS2NPs on the porous surface of CNFs. The vertical growth of NiS2NPs on entire surfaces of porous CNFs appeared in the SEM images of hybrid mat. The hierarchical NiS2NPs@CNF core–shell hybrid nanofibers with 3D interconnected network architecture can endow continuous channels for easy and rapid ionic diffusion to access the electroactive NiS2NPs. The conductive and interconnected CNF core could facilitate electron transfer to the NiS2 shell. Moreover, the porous CNF as a buffering matrix can resist volumetric deformation during the long-term charge–discharge process. The NiS2NPs@CNF electrode can yield high specific capacitance (916.3 F g−1 at 0.5 A g−1) and reveal excellent cycling performances. The solid-state asymmetric supercapacitor (ASC) was fabricated with NiS2NPs@CNF mat as a binder-free positive electrode and activated carbon cloth as a negative electrode. As-assembled ASC not only produce high specific capacitance (364.8 F g−1 at 0.5 A g−1) but also exhibit excellent cycling stability (∼92.8% after 5000 cycles). The ASC delivered a remarkably high energy density of 129.7 Wh kg−1 at a power density of 610 W kg−1. These encouraging results could make this NiS2NPs@CNF hybrid mat a good choice of cathode material for the fabrication of flexible solid-state ASC for various flexible/wearable electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.