Abstract

Flexible inorganic GaN-based microscale light-emitting diodes (µLEDs) show potential applications in wearable electronics, biomedical engineering, and human-machine interfaces. However, developing cost-effective products remains a challenge for flexible GaN-based µLEDs. Here, a facile and stable method is proposed to fabricate flexible GaN-based µLEDs from silicon substrates in an array-scale manner by wet etching. Circular and square µLED arrays with a size and pitch of 500 µm were fabricated and then transferred to a flexible acrylic/copper substrate. The as-fabricated flexible µLEDs can maintain their structure intact while exhibiting a significant increase in external quantum efficiency. This Letter promotes the application of simple and low-cost flexible µLED devices, especially for virtual displays, wearables, and curvilinear displays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.