Abstract

Functional near-infrared spectroscopy (fNIRS) presents an opportunity to study human brains in everyday activities and environments. However, achieving robust measurements under such dynamic condition remains a significant challenge. The modular optical brain imaging (MOBI) system is designed to enhance optode-to-scalp coupling and provide real-time probe 3-D shape estimation to improve the use of fNIRS in everyday conditions. The MOBI system utilizes a bendable and lightweight modular circuit-board design to enhance probe conformity to head surfaces and comfort for long-term wearability. Combined with automatic module connection recognition, the built-in orientation sensors on each module can be used to estimate optode 3-D positions in real-time to enable advanced tomographic data analysis and motion tracking. Optical characterization of the MOBI detector reports a noise equivalence power (NEP) of 8.9 and 7.3 at 735 nm and 850 nm, respectively, with a dynamic range of 88 dB. The 3-D optode shape acquisition yields an average error of 4.2 mm across 25 optodes in a phantom test compared to positions acquired from a digitizer. Results for initial in vivo validations, including a cuff occlusion and a finger-tapping test, are also provided. To the best of our knowledge, the MOBI system is the first modular fNIRS system featuring fully flexible circuit boards. The self-organizing module sensor network and automatic 3-D optode position acquisition, combined with lightweight modules (18 g/module) and ergonomic designs, would greatly aid emerging explorations of brain function in naturalistic settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.