Abstract

Cellulose paper (CP)‐based asymmetrical thin film supercapacitors (ATFSCs) have been considered to be a novel platform for inexpensive and portable devices as the CP is low‐cost, lightweight, and can be rolled or folded into 3D configurations. However, the low energy density and poor cycle stability are serious bottlenecks for the development of CP‐based ATFSCs. Here, sandwich‐structured graphite/Ni/Co2NiO4‐CP is developed as positive electrode and the graphite/Ni/AC‐CP as negative electrode for flexible and high‐performance ATFSCs. The fabricated graphite/Ni/Co2NiO4‐CP positive electrode shows a superior areal capacitance (734 mF/cm2 at 5 mV/s) and excellent cycling performance with ≈97.6% Csp retention after 15 000 cycles. The fabricated graphite/Ni/AC‐CP negative electrode also exhibits large areal capacitance (180 mF/cm2 at 5 mV/s) and excellent cycling performance with ≈98% Csp retention after 15 000 cycles. The assembled ATFSCs based on the sandwich‐structured graphite/Ni/Co2NiO4‐CP as positive electrode and graphite/Ni/AC‐CP as negative electrode exhibit large volumetric Csp (7.6 F/cm3 at 5 mV/s), high volumetric energy density (2.48 mWh/cm3, 80 Wh/kg), high volumetric power density (0.79 W/cm3, 25.6 kW/kg) and excellent cycle stability (less 4% Csp loss after 20 000 cycles). This study shows an important breakthrough in the design and fabrication of high‐performance and flexible CP‐based electrodes and ATFSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.