Abstract

Flexible air-stable short-channel polymer organic field-effect transistor (OFET) arrays with high saturated output current density are demonstrated by utilizing a novel solution-processed naphthobisthiadiazole (NTz) based donor–acceptor semiconducting polymer (PNTz4T) and designing a three-dimensional vertical channel structure with an extremely large ratio of channel width to channel length. The saturated mean field-effect mobility of 0.16cm2/Vs of the short-channel polymer devices remains over one month resulting in air-stable OFET arrays with high on/off ratio over 106 and powerful current–density exceeding 0.3A/cm2 under low operation voltage, both of which meet the requirements for such applications as driving organic light-emitting diodes in active-matrix displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.