Abstract

Double reheat is a potential technique to increase the efficiency of coal-fired power plants. Large penetration of renewable power requires coal-fired power plants to operate flexibly. The thermal inertia of a double-reheat boiler is extremely high due to its complicated flow, strong coupling and numerous devices, which seriously restrict the operational flexibility of double-reheat coal-fired power plants. In this study, dynamic simulation models and temperature control systems of a double-reheat boiler are developed via GSE software and then validated to understand the heat storage change law. An improved control model considering heat storage changes is proposed. The flexibility of original and improved control strategies is compared. It turns out that steam temperatures in the boiler system with the original control exceed the allowable ranges when the load cycling rate is 1.5% Pe0 min−1. By contrast, steam temperatures in the boiler system with the improved control remain within the allowable ranges when the load cycling rate is 3.0% Pe0 min−1. The response time with the improved control is shorter than that with the original control. This study is expected to provide a detailed reference for improving the flexibility of double-reheat power plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.