Abstract

Despite natural fibers gaining significant attention in recent decades, their limited performance and poor durability under humid environments cannot allow them to fully replace their synthetic counterparts as reinforcement for structural composites. In such a context, this paper aims to investigate how exposure to a humid/dry cycle affects the mechanical response of epoxy laminates reinforced with flax and glass fibers. In particular, the main goal is to assess the performance evolution of a glass-flax hybridized stacking sequence in comparison with the full glass and flax fiber reinforced composites. To this end, the investigated composites were first exposed to salt-fog for 15 or 30 days and then to dry conditions (i.e., 50% R.H. and 23 °C) for up to 21 days. The presence of glass fibers in the stacking sequence significantly stabilizes the mechanical performance of composites during the humid/dry cycle. Indeed, hybridization of inner flax laminae with outer glass ones, acting as a protective shield, hinders the composite degradation due to the humid phase also promoting performance recovery during the dry phase. Hence, this work showed that a tailored hybridization of natural fibers with glass fibers represents a suitable approach to extend the service-life of natural fiber reinforced composites exposed to discontinuous humid conditions, thus allowing their employment in practical indoor and outdoor applications. Finally, a simplified theoretical pseudo-second-order model that aimed to forecast the performance recovery shown by composites was proposed and experimentally validated, highlighting good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.