Abstract

Several recent studies have compared the relative efficiency of alternative flaw selection strategies for partial-order causal link (POCL) planning. We review this literature, and present new experimental results that generalize the earlier work and explain some of the discrepancies in it. In particular, we describe the Least-Cost Flaw Repair (LCFR) strategy developed and analyzed by Joslin and Pollack (1994), and compare it with other strategies, including Gerevini and Schubert's (1996) ZLIFO strategy. LCFR and ZLIFO make very different, and apparently conflicting claims about the most effective way to reduce search-space size in POCL planning. We resolve this conflict, arguing that much of the benefit that Gerevini and Schubert ascribe to the LIFO component of their ZLIFO strategy is better attributed to other causes. We show that for many problems, a strategy that combines least-cost flaw selection with the delay of separable threats will be effective in reducing search-space size, and will do so without excessive computational overhead. Although such a strategy thus provides a good default, we also show that certain domain characteristics may reduce its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.