Abstract

Currently, in mass spectrometry-based metabolomics, limited reference mass spectra are available for flavonoid identification. In the present study, a database of probable mass fragments for 6,867 known flavonoids (FsDatabase) was manually constructed based on new structure- and fragmentation-related rules using new heuristics to overcome flavonoid complexity. We developed the FlavonoidSearch system for flavonoid annotation, which consists of the FsDatabase and a computational tool (FsTool) to automatically search the FsDatabase using the mass spectra of metabolite peaks as queries. This system showed the highest identification accuracy for the flavonoid aglycone when compared to existing tools and revealed accurate discrimination between the flavonoid aglycone and other compounds. Sixteen new flavonoids were found from parsley, and the diversity of the flavonoid aglycone among different fruits and vegetables was investigated.

Highlights

  • Flavonoids are secondary metabolites derived from plants, and these compounds are a major target for mass spectrometry (MS)-based metabolomics because of their potential health benefits and functions in plants[1]

  • We developed a system for annotating flavonoids (FlavonoidSearch), which consists of a database of virtual mass fragments (FsDatabase) predicted from 6,867 known flavonoid structures in one of the largest flavonoid databases and a computational tool (FsTool) to search the database

  • We found 16 novel flavonoids in parsley using this system in combination with the O-substituent list (Supplementary Table S8), which suggests that many minor flavonoids have been overlooked in earlier studies using conventional ultraviolet detectors

Read more

Summary

Introduction

Flavonoids are secondary metabolites derived from plants, and these compounds are a major target for mass spectrometry (MS)-based metabolomics because of their potential health benefits and functions in plants[1]. Modification of the structure of a flavonoid can occur in the soil, during food fermentation processes and in the body (e.g. in the intestine or liver)[5] This results in a high diversity of flavonoids, and a comprehensive and high-throughput technique is required for their annotation. Flavonoids have a core structure called the aglycone, which contains a diphenylpropane backbone (C6-C3-C6) and various types and numbers of substituents (e.g. glycosyl and acyl groups)[12]. This is similar to lipids, which have head groups containing various acyl residues[7]. We developed a system for annotating flavonoids (FlavonoidSearch), which consists of a database of virtual mass fragments (FsDatabase) predicted from 6,867 known flavonoid structures in one of the largest flavonoid databases (metabolomics.jp) and a computational tool (FsTool) to search the database

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.