Abstract

Typically, simple flavoprotein oxidases couple the oxidation of their substrates with the formation of hydrogen peroxide without release of significant levels of the superoxide ion. However, two evolutionarily related single-domain sulfhydryl oxidases (Erv2p; a yeast endoplasmic reticulum resident protein and augmenter of liver regeneration, ALR, an enzyme predominantly found in the mitochondrial intermembrane) release up to ~30% of the oxygen they reduce as the superoxide ion. Both enzymes oxidize dithiol substrates via a redox-active disulfide adjacent to the flavin cofactor within the helix-rich Erv domain. Subsequent reduction of the flavin is followed by transfer of reducing equivalents to molecular oxygen. Superoxide release was initially detected using tris(3-hydroxypropyl)phosphine (THP) as an alternative reducing substrate to dithiothreitol (DTT). THP, and other phosphines, showed anomalously high turnover numbers with Erv2p and ALR in the oxygen electrode, but oxygen consumption was drastically suppressed upon the addition of superoxide dismutase. The superoxide ion initiates a radical chain reaction promoting the aerobic oxidation of phosphines with the formation of hydrogen peroxide. Use of a known flux of superoxide generated by the xanthine/xanthine oxidase system showed that one superoxide ion stimulates the reduction of 27 and 4.5 molecules of oxygen using THP and tris(2-carboxyethyl)phosphine (TCEP), respectively. This superoxide-dependent amplification of oxygen consumption by phosphines provides a new kinetic method for the detection of superoxide. Superoxide release was also observed by a standard chemiluminescence method using a luciferin analogue (MCLA) when 2 mM DTT was employed as a substrate of Erv2p and ALR. The percentage of superoxide released from Erv2p increased to ~65% when monomeric mutants of the normally homodimeric enzyme were used. In contrast, monomeric multidomain quiescin sulfhydryl oxidase enzymes that also contain an Erv FAD-binding fold release only 1-5% of their total reduced oxygen species as the superoxide ion. Aspects of the mechanism and possible physiological significance of superoxide release from these Erv-domain flavoproteins are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.