Abstract

Thermal decomposition of cycloheptane was studied using flash pyrolysis coupled with vacuum ultraviolet (118.2 nm) single photon ionization time-of-flight mass spectrometry at temperatures ranging from 295 K to 1380 K. C-C bond breaking of cycloheptane leading to the 1,7-heptyl diradical was considered as the initiation step. The 1,7-heptyl diradical could readily isomerize to 1-heptene and decompose into several fragments, with dissociation to •C4H9 and •C3H5 as the predominant product channel. The 1,7-heptyl diradical could undergo direct dissociation, as evidenced by the production of the C5H10 species. Quantum chemistry calculations at UCCSD(T)/cc-pVDZ//UB3LYP/cc-pVDZ level of theory on the initial reaction pathways of cycloheptane were also carried out to support the experimental observations. Other possible initiation channels, as well as some secondary reaction products, were also identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.