Abstract

Sensor localization in wireless sensor networks is an important component of many applications. Previous work has demonstrated how localization can be achieved using various methods. In this paper we focus on achieving fine-grained localization that does not require external infrastructure, specialized hardware support, or excessive sensor resources. We use a real sensor network and provide measurements on the actual system. We adopt a localization approach that relies on acoustic sounds and clock synchronization. The contribution of our work is achieving consistent sound pulse detection at each sensor and precise range estimation using a high-precision clock synchronization implementation. We first describe our technique and then we evaluate our approach using a real setup. Our results show that our approach achieves an average clock synchronization accuracy of 5μs. We verify this accuracy using an external global clock via an interrupt mechanism. Our sound detection technique is able to consistently identify sound pulses up to 10m distances in indoor environments. Combining the two techniques, we find that our localization method results in accurate range estimation with an average error of 11cm in distances up to 7m and in consistent range estimation up to 10m in various indoor environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.