Abstract

Supercapacitors are known for their rapid energy charge–discharge properties, often ten to a hundred times faster than batteries. However, there is still a demand for supercapacitors with even faster charge–discharge characteristics to fulfill the requirements of emerging technologies. The power and rate capabilities of supercapacitors are highly dependent on the morphology of their electrode materials. An electrically conductive 3D porous structure possessing a high surface area for ions to access is ideal. Using a flash of light, a method to produce highly interconnected 3D graphene architectures with high surface area and good conductivity is developed. The flash converted graphene is synthesized by reducing freeze‐dried graphene oxide using an ordinary camera flash as a photothermal source. The flash converted graphene is used in coin cell supercapacitors to investigate its electrode materials properties. The electrodes are fabricated using either a precoating flash conversion or a postcoating flash conversion of graphene oxide. Both techniques produce supercapacitors possessing ultra‐high power (5–7 × 105 W kg−1). Furthermore, optimized supercapacitors retain >50% of their capacitance when operated at an ultrahigh current density up to 220 A g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.