Abstract

Introduction. At present, the house-building industry, that produces timber structures, is in the process of sufficiently intensive development; however, high flammability of wood is the factor that restrains widespread use of timber in construction. The purpose of this work is to optimize the conditions of application of fire-retardant timber in the construction industry. The co-authors believe that the following problems are to be solved to attain this objective:● a comparative analysis of the fireproofing efficiency of several fire-proofing agents applied to different species of wood;● determination of the character of influence produced by fire proofing agents on fire retardant properties of wood.Methods of research. The fire proofing efficiency of sample compositions designated for wood was measured in compliance with the benchmark testing method specified in GOST R 53292 (p. 6.2). Experiments were launched pursuant to the methodology and with the help of measurement instruments specified in GOST 30244–94 (Method 2) to study the extent of the pine-tree timber flammability suppression. Critical values of thermal loads that may trigger inflammation and flame propagation in timber structures, that can be described using values of the critical surface density of the heat flow, were determined pursuant to GOST 30402–96 and GOST R 51032–97. The toxicity of combustion products and the smoke generation ability of fire-retardant pine-tree samples was assessed using standard methods and measurement instruments pursuant to GOST 12.1.044–89 (paragraphs 4.18 and 4.20).Research results and discussion. Biological flame retardants, integrated biological flame retardants that also ensure moisture protection, intumescent coatings, lacquers and varnishes that are ready for use and labelled as having group I and II fire-retardant efficiency pursuant to GOST R 53292, were studied in the course of this research project. The co-authors have identified that the mass loss by all fire-retardant compositions is below 9 %, if applied to samples of larch and oak-tree timber, same as if it were applied to standard samples of pine-tree timber.The findings of the experiment conducted to assess the flammability, ignitibility, flame propagation, smoke generation ability and toxicity of combustion products have proven the maximal efficiency of the composition designated for full-cell pressure impregnation of timber that ensures the properties of the material labelled as G1, V1, RP1, T2, D2.Conclusions. Hence, the research results have enabled the co-authors to assess the discrepancy between average mass loss values demonstrated by the samples of different species of timber (alder, linden, pine-tree, larch, and oak-tree).The comprehensive study of flammability properties of timber, treated by compositions that vary in their chemical composition and mode of action of the fire proofing agent, enabled the co-authors to identify the impact produced by versatile fire-proofing agents on different flammability properties of pine-tree timber with regard taken of the fire-safe use of construction materials and constructions of buildings and structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.