Abstract
This study presents an innovative electrostatic spray flame synthesis (ESFS) reactor that combines the advantages of electrostatic spray and flame synthesis for precise spray control and efficient single-step continuous synthesis. To overcome the limitations of conventional ESFS systems, which often suffer from low atomized precursor flux, we successfully demonstrated a high-flux disk electrostatic atomizer coupled low-swirl flame reactor, achieving a precursor flux of up to 30 ml/h about 30 times higher than that of typical ESFS devices. The atomized precursor being rapidly carried away from the burner is undergoing high-temperature pyrolysis and particle formation through lifted premixed turbulent flames. The ESFS system provides extensive control over parameters such as flame temperature, equivalence ratio, residence time, initial droplet sizes, and precursor concentrations. For illustrative purposes, the ESFS system was utilized to synthesize silica nanoparticles, demonstrating the capability of synthesizing nanoparticles with various properties. By manipulating the collection position and height, the particle size has made a substantial leap from the nanoscale to the micrometer level. This remarkable achievement underscores the system's enormous potential for precise particle size regulation and one-step synthesis of complex structured thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.