Abstract

A new technique to stabilize a flame in a high-velocity stream with use of a tubular flame has been proposed. To elucidate the validity of this technique, an experiment has been conducted by mounting a tubular flame burner on the nozzle. Flame stability limits and temperature distributions around the burner port have been determined, and experiments have been extended to the ducted combustion to measure pressure fluctuations and to analyze the burned gases. Results show that the tubular flame can successfully stabilize the main flame up to 130 m/s, which is the upper limit of the present supply facility. The main flame is well anchored at the exit of the nozzle, and the tubular flame efficiently supplies heat and radicals to the main flame. In the ducted combustion, the pressure fluctuations are reduced significantly. The exhaust gas analyses, however, indicate that an almost chemical equilibrium condition can be achieved at 50 m/s, but not at 90 and 130 m/s. Since the energy input relative to the main flame is just 6.1% at 130 m/s, the present tubular burner is not enough to burn all the unburned gas completely at high velocities, although the main flame can be anchored. The slit length and/or the slit width of the tubular flame burner should be larger to overcome this shortage. From the above results, it is concluded that the tubular flame has a potential for stabilizing a flame in a high-speed stream.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.