Abstract

It remains a significant challenge to fabricate self-healing aerogels with excellent flame retardancy. Herein, we develop a class of biomass aerogels by electrostatically assembling chitosan (CS), phytic acid (PA), and itaconic acid (IA). The electrostatic interaction between CS and IA is weak and dynamic, so freeze-drying the solution of CS and IA enables the formation of continuous aerogel skeleton with self-healing ability and re-programmability; in comparison, the electrostatic interaction between CS and PA is strong and less dynamic, and thus mixing PA with CS in aqueous solution leads to fine precipitates of high flame retardancy due to the synergistic phosphorus-nitrogen effect. Integrating the continuous skeleton and the fine precipitates results in self-healing aerogles with UL-4 V-0 rating of flame retardancy aerogels and auto-extinguishable feature. Interestingly, the aerogels after burning in flame for 30 s form a skin-core structure, and the carbonized skin protects the integrity of the aerogels and the self-healing ability of the internal parts. Therefore, this work provides a facile strategy to develop multi-functional aerogels which hold great promise for advanced applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.