Abstract

The dependence of UV-visible emission characteristics in hydrocarbon flames as a function of flame equivalence ratio and total flow rate is examined for low-pressure acetylene/oxygen flames used for materials synthesis and for atmospheric-pressure methane/air flames typically seen in industrial boilers and heaters. In both flames, the OH and CH emission features show significantly different variations with respect to changes in equivalence ratio, while variations with changes in total flow rate are nearly identical. These results suggest that flame emission spectroscopy can be used as a sensitive, on-line process diagnostic for equivalence ratio monitoring in flame reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.