Abstract

The unicellular green alga Spermatozopsis similis Preisig et Melkonian bears two flagella of unequal length. After deflagellation, cells first regenerated the longer flagellum to about one third of its original length, before the shorter flagellum started to develop. Growth rates were similar for both flagella. Thus, the length difference between both flagella was restored by a lag‐phase during regeneration of the shorter flagellum. To explain the lag‐phase, we have considered a gating mechanism near the flagellar base that controls the entry of precursors into the flagellum. This would allow cells to restrict the time of effective flagellar growth and thereby control flagellar length. Our data indicated that cells are capable of individually regulating flagellar assembly onto basal bodies. We discuss a recent model of flagellar length regulation based on a balance of assembly and disassembly and conclude that flagellar length is controlled by additional factors, including the availability of flagellar proteins and the developmental status of basal bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.