Abstract

A spliced variant of the human glucocorticoid receptor GRbeta has been implicated in glucocorticoid responsiveness in glaucoma. Over-expression of the FK506-binding immunophilin FKBP51 also causes a generalized state of glucocorticoid resistance. In the present study, the roles of FKBP51 in the nuclear transport of GRbeta and glucocorticoid responsiveness were investigated. Human trabecular meshwork cells (GTM3 and TM5) and HeLa cells were treated with dexamethasone (DEX) and FK506 and transfected with GRbeta and FKBP51 expression vectors. Coimmunoprecipitation and Western blot analyses were performed to study interactions of FKBP51 and FKBP52 with GRalpha, GRbeta, Hsp90, or dynein. The cells were transfected with a GRE-luciferase reporter to evaluate the effects of DEX and FK506 and the overexpression of GRbeta and FKBP51 on glucocorticoid-mediated gene expression. FKBP51 was involved in constitutive nuclear transport of both GRalpha and -beta in the absence of ligands. FKBP52 appeared to be solely responsible for the nuclear transport of ligand-activated GRalpha. DEX stimulated the translocation of GRalpha but not GRbeta. Overexpression of either GRbeta or FKBP51 stimulated GRbeta translocation and reduced DEX-induced luciferase in HeLa cells. FK506 did not alter DEX-induced translocation of GRalpha. However, FK506 increased the association of FKBP51 with GRbeta and stimulated DEX-induced translocation of GRbeta in normal TM cells, but not in glaucoma TM cells. Increased nuclear GRbeta significantly inhibited glucocorticoid responsiveness in TM cells. Nuclear transport of GRbeta represents a novel mechanism through which FKBP51 alters GC sensitivity. GRbeta and FKBP51 may be responsible for increased responsiveness in steroid-induced ocular hypertensive individuals as well as in patients with glaucoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.