Abstract

This article investigates the fixed-time synchronization issue for linearly coupled complex networks with discontinuous nonidentical nodes by employing state-feedback discontinuous controllers. Based on the fixed-time stability theorem and linear matrix inequality techniques, novel conditions are proposed for concerned complex networks, under which the fixed-time synchronization can be realized onto any target node by using a set of newly designed state-feedback discontinuous controllers. To some extent, this article extends and improves some existing results on the synchronization of complex networks. In the final numerical example section, the Chua circuit network is introduced to indicate the effectiveness of our method by showing its fixed-timely synchronization results with the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.