Abstract

This paper describes and illustrates a unified methodology for robust, fixed-structure controller synthesis. The approach is based upon direct fixed-structure controller synthesis using a decentralized static output feedback formulation as a general framework for representing a large class of controller structures. Scaled Popov bounds for the real structured singular value are used to account for real parameter uncertainty and provide the means for optimizing a worst-case ℋ︁2 cost bound with respect to the free parameters of the controller. Quasi-Newton optimization algorithms are used to solve the resulting numerical optimization problem. Initial stability multiplier and scaling matrices needed in scaled Popov synthesis are obtained by solving an LMI feasibility problem. Using both centralized and decentralized controller structures, numerical results are obtained for a 16th-order acoustic duct model with uncertain damped natural frequencies and for a two-dimensional beam-spring model with uncertain actuator locations. © 1998 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.