Abstract

Because pixel values of foggy images are irregularly higher than those of images captured in normal weather (clear images), it is difficult to extract and express their texture. No method has previously been developed to directly explore the relationship between foggy images and semantic segmentation images. We investigated this relationship and propose a generative adversarial network (GAN) for foggy image semantic segmentation (FISS GAN), which contains two parts: an edge GAN and a semantic segmentation GAN. The edge GAN is designed to generate edge information from foggy images to provide auxiliary information to the semantic segmentation GAN. The semantic segmentation GAN is designed to extract and express the texture of foggy images and generate semantic segmentation images. Experiments on foggy cityscapes datasets and foggy driving datasets indicated that FISS GAN achieved state-of-the-art performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.