Abstract

The strength of trophic cascade effects in aquatic ecosystems depend, in part, on the identity of the top predator involved. We examined whether an invasive benthic fish (round goby, Neogobius melanostomus) altered the strength of cascade effects in a heterotrophic stream and in a controlled mesocosm experiment relative to the effects of a functionally similar, native fish. In the stream, the introduced fish had a direct effect on grazer and shredder abundance which led to a significant increase in periphyton chlorophyll a, a significant reduction in leaf breakdown rate, an increase in leaf biomass remaining, but no change in periphyton ash-free dry mass. In mesocosms, native and introduced fish similarly reduced shredder abundance, but this did not lead to an indirect effect on leaf breakdown rates or biomass remaining at the end of the experiment. Indirect effects of introduced fish on periphyton biomass and chlorophyll a in mesocosms were both significant and were stronger than in the field, but were the result of grazer behavioral modification and not reduced grazer abundance. Collectively, these results suggest non-native fish have the ability to initiate trophic cascades in heterotrophic streams, and that both fish identity and environmental context are important in determining the strength of cascades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.